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A B S T R A C T   

Background: Air pollution exposure has been associated with increased risk of COVID-19 incidence and mortality 
by ecological analyses. Few studies have investigated the specific effect of traffic-related air pollution on COVID- 
19 severity. 
Objective: To investigate the associations of near-roadway air pollution (NRAP) exposure with COVID-19 severity 
and mortality using individual-level exposure and outcome data. 
Methods: The retrospective cohort includes 75,010 individuals (mean age 42.5 years, 54% female, 66% Hispanic) 
diagnosed with COVID-19 at Kaiser Permanente Southern California between 3/1/2020–8/31/2020. NRAP ex
posures from both freeways and non-freeways during 1-year prior to the COVID-19 diagnosis date were esti
mated based on residential address history using the CALINE4 line source dispersion model. Primary outcomes 
include COVID-19 severity defined as COVID-19-related hospitalizations, intensive respiratory support (IRS), 
intensive care unit (ICU) admissions within 30 days, and mortality within 60 days after COVID-19 diagnosis. 
Covariates including socio-characteristics and comorbidities were adjusted for in the analysis. 
Result: One standard deviation (SD) increase in 1-year-averaged non-freeway NRAP (0.5 ppb NOx) was associated 
with increased odds of COVID-19-related IRS and ICU admission [OR (95% CI): 1.07 (1.01, 1.13) and 1.11 (1.04, 
1.19) respectively] and increased risk of mortality (HR = 1.10, 95% CI = 1.03, 1.18). The associations of non- 
freeway NRAP with COVID-19 outcomes were largely independent of the effect of regional fine particulate 
matter and nitrogen dioxide exposures. These associations were generally consistent across age, sex, and race/ 
ethnicity subgroups. The associations of freeway and total NRAP with COVID-19 severity and mortality were not 
statistically significant. 
Conclusions: Data from this multiethnic cohort suggested that NRAP, particularly non-freeway exposure in 
Southern California, may be associated with increased risk of COVID-19 severity and mortality among COVID-19 
infected patients. Future studies are needed to assess the impact of emerging COVID-19 variants and chemical 
components from freeway and non-freeway NRAP.   

1. Introduction 

Several national and international studies have linked long- and 
short-term air pollution exposure to the incidence and mortality of the 
Coronavirus Disease 2019 (COVID-19). (Wu et al., 2020; Bianconi et al., 

2020; Liang et al., 2020; Ogen, 2020; Andrée, 2020; Yao et al., 2020; 
Travaglio et al., 2021; Pozzer et al., 2020; Hutter et al., 2020; Frontera 
et al., 2020) Air pollution exposure may increase the susceptibility of 
severe COVID-19 due to the adverse effect on comorbidities such as 
chronic respiratory and cardiometabolic diseases. (Langrish et al., 2012; 
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An et al., 2018; Lawal, 2017; Lin et al., 2018; Chen et al., 2015; Chen 
et al., 2016) At the same time, short-term air pollution exposure may 
also increase the risk of COVID-19 severity through the air pollution- 
induced immunotoxicity and inflammation. (Calderón-Garcidueñas 
et al., 2009; Stanek et al., 2011) Most previous studies have focused on 
the associations with regional air pollutants exposures such as fine 
particulate matter (PM2.5) and nitrogen dioxide (NO2), and findings 
were mostly drawn from ecological analyses using population-level data 
on air pollution exposure and COVID-19 outcomes aggregated over 
various geospatial areas. It is known that the ecological study design has 
limitations that can lead to biased results, such as potential mis
classifications of exposure and outcomes and uncontrolled confounders 
across heterogeneous populations. Therefore, there is a need for in
vestigations at the individual level in multiethnic cohorts adjusting for 
key socio-demographic characteristics and comorbidity covariates. 
(Villeneuve and Goldberg, 2020) 

Traffic emissions are main contributors to ambient air pollution, 
especially in urban cities. To our knowledge, only one ecological study 
has used land-use regression models to predict NO2 exposure in 2016 as 
an estimate of long-term traffic-related air pollution exposure and 
assessed its association with COVID-19 incidence and mortality in Los 
Angeles. (Lipsitt et al., 2021) However, the effect of ambient air pollu
tion exposure was not adjusted for and the interpretation of the results is 
limited by the population-level outcome and exposure data. The COVID- 
19 lockdown has also significantly reduced traffic volumes, (Parker 
et al., 2020) which was not studied in that analysis and would require 
better exposure assessment, specifically for near-roadway air pollution 
exposure (NRAP) mixture from different sources of freeways and non- 
freeways. To fill these gaps, we investigated the associations of 
COVID-19 severity and mortality with longer- and shorter-term NRAP 
exposure estimated by line-source dispersion models, which incorporate 
measures of traffic volume, vehicle emissions, and meteorological data 
to produce concentrations of NRAP separately from freeway and non- 
freeway sources. Our study was built upon a multiethnic cohort of 
COVID-19 patients from a large integrated health care system in 
Southern California with a well-established electronic medical records 
(EMR) system. NRAP exposure was estimated using individual residen
tial address history, while severity and mortality outcomes after COVID- 
19 diagnosis and a spectrum of comorbidities and socioeconomic char
acteristics were extracted from the EMR. 

2. Methods 

2.1. Cohort 

This is a retrospective cohort study with data collected from EMR at 
Kaiser Permanente Southern California (KPSC), a large integrated 
healthcare system with over 4.5 million members across Southern Cal
ifornia. The number of KPSC members is around 20% of the entire 
population of Southern California. KPSC membership is diverse and 
similar in socioeconomic characteristics to the region’s census de
mographics. (Koebnick et al., 2012) The cohort included individuals 
diagnosed with COVID-19 at KPSC between March 1, 2020 to August 31, 
2020 (n = 82,213) with follow-up up to October 31, 2020. Positive 
COVID-19 diagnosis was defined as a positive SARS-CoV-2 polymerase 
chain reaction (PCR) lab test result or a diagnosis code (ICD-10 and 
internal KPSC codes) for COVID-19 (Supplemental Table 1). Individuals 
with a negative lab result within two weeks following an asymptomatic 
COVID-19 diagnosis code were excluded to avoid potential false posi
tives. The index date was defined as the earliest lab order for those with 
lab data or the earliest COVID-19 diagnosis code for those with only 
diagnosis codes. Individuals under 12 years of age (n = 2409), non-KPSC 
health plan members with incomplete medical records (n = 1365), or 
individuals with incomplete address information for air pollution 
exposure assignment (n = 3423) or unknown gender (n = 6) were 
excluded. The final study cohort included 75,010 patients, of whom 

61,689 (82.2%) had positive PCR lab results. This study was approved 
by the KPSC Institutional Review Board with waiver of informed 
consent. 

2.2. Air pollutant exposures 

NRAP exposure was estimated by the California Line Source 
Dispersion Model (CALINE4) through detailed residential history, where 
residential address history during one year prior to index date was 
extracted from a consolidated address history table from Geographically 
Enriched Member Sociodemographic (GEMS) DataMart created by the 
KPSC Utility for Care Data Analysis (UCDA). Residential addresses were 
geocoded using ArcGIS and geocode quality was assessed based on the 
three ArcGIS variables: STATUS (matched, tied, unmatched), SCORE 
(0–100), and ADDRESS TYPE (point address, street address, street name, 
postal). Because the traffic pollution assignments are sensitive to the 
geographic accuracy of the residence locations relative to major roads, 
only the highest quality addresses were included. The criteria were that 
the addresses were “matched,” with a score of 98–100, and with “point 
address” or “street address” types, which indicates they are geo- 
referenced to a parcel or interpolated by address number between 
known cross streets. The CALINE4 model (Benson, 1989) then estimates 
NRAP using the concentrations of NOx at each latitude and longitude for 
freeway and non-freeway roads using traffic emissions (California Air 
Resources Board, 2017) (calculated within a 5-km buffer of the resi
dence), traffic volume, roadway geometry and meteorological condi
tions (NOAA, 2021) including wind speed and direction, pollution 
mixing heights, and atmospheric stability. Like other Gaussian disper
sion models, such as AERMOD and RLINE, CALINE4 is a steady state 
model that estimates 1-hour average concentrations assuming the wind 
speed, wind direction, vehicle emissions, and atmospheric stability are 
locally constant each hour. The CALINE4 model has been evaluated 
against near-road hourly observations in numerous studies and has 
demonstrated reasonable performance for a variety of inert pollutants in 
different roadway and meteorlogical settings. (Levitin et al., 2005; 
Benson, 1992; Kenty et al., 2007; Yura et al., 2007) Several model 
intercomparison studies report similar performance of the RLINE, 
AERMOD, ADMS, and CALINE4 models. (Chen et al., 2009; Heist et al., 
2013) The results from CALINE4 have also been used in numerous 
epidemiologic studies to assess associations of near-read air pollution 
and various health outcomes. (Farzan et al., 2021; Chen et al., 2019; Kim 
et al., 2018; Weaver and Gauderman, 2018) 

It is noted that the CALINE4 estimates of NRAP quantified by NOx is a 
surrogate for the mixture of gaseous and particle pollutants emitted from 
vehicles running on freeways and non-freeways. Traffic volumes, 
speeds, and heavy-duty truck volumes were obtained from Caltrans real- 
time Performance Measurement System (PeMS) for major roads and the 
Streetlytics™ data by Bentley Systems, Inc. (www.bentley.com) for all 
other roads. The daily PeMS traffic volumes from mid-March to mid- 
April show 38% lower total vehicle volumes and 25% lower truck vol
umes on major roads than in the first 2.5 months of 2020. The PeMS 
daily traffic data in 2019–2020 was used to account for the large re
ductions from “normal” traffic during the shelter-in-place period 
compared to other periods. The road geometry was based on the detailed 
and spatially accurate 2019 HERE Technologies roadway network data 
(https://www.here.com/). The CALINE4 model has been applied using 
the hourly meteorology and traffic volumes for individual days at each 
residence and then averaged to assign the freeway NRAP, non-freeway 
NRAP and total NRAP (sum of freeway and non-freeway NRAP) for 
the 1-month (shorter-term) and 1-year (longer-term) average traffic- 
related air pollution exposures prior to the COVID-19 diagnosis. The 
estimates incorporate residence changes during the exposure periods. 

Shorter- and longer-term average exposures to regional air pollutants 
including PM2.5 and NO2 were estimated for residential addresses based 
on hourly and daily air quality data from ambient monitoring stations 
reported to the U.S. Environmental Protection Agency’s Air Quality 
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System (U.S. Environmental Protection Agency’s Air Quality System, 
2021) and the California Air Resources Board’s Air Quality and Mete
orological Information System. The regional PM2.5 and NO2 were 
adjusted for in the exploratory analysis to assess the independent effect 
of NRAP. 

2.3. COVID-19-related severity and mortality outcomes 

The primary outcomes included COVID-19 severity defined as 
COVID-19-related hospitalizations, intensive respiratory support (IRS), 
and intensive care unit (ICU) admissions within 30 days after the index 
date, and mortality within 60 days. COVID-19-related hospitalization 
and ICU admissions were obtained from inpatient records and out-of- 
network claims with associated COVID-19 ICD codes. IRS was defined 
as having any use of invasive mechanical ventilation, non-invasive 
ventilation, high flow nasal cannula, or high flow mask with associ
ated COVID-19 ICD codes. Mortality was obtained from EMR mortality 
and inpatient data. 

2.4. Covariates 

Demographics (age, sex, race/ethnicity), Medicaid insurance status, 
body mass index (BMI), smoking history, and history of other comor
bidities at the time of COVID-19 diagnosis were obtained from the KPSC 
EMR. BMI categories were calculated based on CDC definitions of un
derweight/normal (<25 kg/m2), overweight (25 to <30 kg/m2), obese 
class 1 and 2 (30 to <40 kg/m2), and obese class 3 (40 kg/m (Bianconi 
et al., 2020) or higher). The Charlson comorbidity index was calculated 
using diagnosis codes within 12-month prior to COVID-19 diagnosis and 
categorized to none, one, or at least two comorbidities. (Quan et al., 
2005) Neighborhood-level education and income information were 
estimated using Nielsen demographic data. (Nielsen Demographic Data, 
2021) Medical center was derived from utilization records within the 
prior year or the medical center where COVID-19 diagnosis was 
confirmed if prior utilization was unavailable. 

2.5. Statistical analysis 

Correlations among freeway, non-freeway and total NRAP as well as 
among regional PM2.5 and NO2 across shorter- and longer-term periods 
were assessed using Pearson correlation coefficients. We first used single 
pollutant models to assess the association of each NRAP exposure at each 
time window with each outcome. For severity outcomes, mixed effects 
logistic regression models were used to estimate the odds ratios (OR) 
associated with NRAP, with medical center included as a random effect 
to account for potential within-center correlations. For mortality within 
60 days, survival models with medical center as a cluster variable with 
sandwich variance estimators were used to estimate and test for the 
significance of the hazard ratios (HR) associated with time to death 
within 60 days. Individuals were censored at 60 days after index date, 
date of death, end of membership, or end of study (October 31, 2020), 
whichever occurred first, to focus on deaths related to COVID-19 
incidence. 

All models were adjusted for age (<35, 35–64, ≥65 years), race/ 
ethnicity (white, Black, Asian, Hispanic, other), sex, BMI (underweight/ 
normal, overweight, obese (class 1 and 2), obese (class3), smoking status 
(current, former, never), Charlson comorbidity index (0, 1, ≥2), 
Medicaid insurance status, median neighborhood income (<$40,000, 
$40,000–$79,999, ≥$80,000), and college education (based on neigh
borhood proportion of highest education). To adjust for temporal vari
ations of the COVID-19 pandemic, indicators for month of COVID-19 
diagnosis were included. To investigate whether the associations of 
NRAP with COVID-19 outcomes were independent from regional air 
pollutants exposure, we ran separate models that additionally adjusted 
for regional NO2 and PM2.5 exposures. Potential effect modifications by 
age, sex, and race/ethnicity were assessed using multiplicative 

interactions between these covariates and exposures. Sensitivity anal
ysis were performed to assess the potential non-linear relationships of 
NRAP and age as a covariate with the four outcomes using generalized 
additive models with a cubic smoothing spline. All ORs and HRs along 
with 95% confidence intervals (CI) are scaled to a one standard devia
tion (SD) increase in exposure. Analyses were conducted using SAS 
version 9.4 (Cary, NC) or R version 3.6.0. 

3. Results 

Among the 75,010 total COVID-19 patients diagnosed from March to 
August 2020, the mean (SD) age was 42.5 (16.5) years; 53.7% were 
females; 65.8% were Hispanic; 76% were overweight or obese; 16.1% 
were former and 5.2% current smokers; and 28.8% had a history of 
comorbidity (Table 1). 4757 (6.3%) individuals had a COVID-19-related 
hospitalization, 1764 (2.4%) had COVID-19-related IRS, and 1125 
(1.5%) had a COVID-19-related ICU admission within 30 days after 
COVID-19 diagnosis, while 1090 (1.5%) died within 60 days after 
COVID-19 diagnosis. Associations between key socio-characteristic 
variables and COVID-19 outcomes are presented in Supplemental 
Table 2. 

Means (SDs) of estimated NOx for 1-year averaged freeway, non- 
freeway and total NRAP were 1.0 (1.3), 0.7 (0.5) and 1.7 (1.5) ppb, 
respectively. Means (SDs) of 1-month averaged freeway, non-freeway 
and total NRAP were lower than 1-year averaged NRAP exposure and 
were 0.8 (1.1), 0.5 (0.4) and 1.3 (1.3) ppb, respectively (Table 1). There 
were strong temporal correlations between one-month and one-year 
averaged exposures (R > 0.9 for freeway, non-freeway and total 
NRAP). Since the total NRAP is mostly attributable to the freeway NRAP, 
there was a high correlation between freeway and total NRAP for both 1- 
month and 1-year averaged exposures (R > 0.85). However, non- 
freeway NRAP had low correlation with freeway NRAP (R = 0.1) 
(Supplemental Table 3). 

No statistically significant departure from linear relationships were 
observed between non-freeway NRAP and COVID-19 outcomes (p for 
cubic spline term > 0.05). Both longer- and shorter-term non-freeway 
NRAP was associated with COVID-19 severity and mortality after 
adjusting for covariates (Fig. 1). However, no significant associations 
were observed between freeway NRAP or total NRAP with COVID-19 
severity and mortality (Fig. 1). One-year averaged non-freeway NRAP 
was associated with increased risk of COVID-19-related IRS (odds ratio 
per 1 SD of 0.5 ppb in NOx, OR = 1.07, 95% confidence internal, CI =
1.01, 1.13), ICU admission [OR (95% CI) = 1.11 (1.04, 1.19)], and 
mortality (hazard ratio, HR = 1.10, 95% CI = 1.03, 1.18). One-month 
averaged non-freeway NRAP had similar associations with COVID-19- 
related ICU admission and mortality [OR (95% CI) per 1 SD of 0.4 ppb 
in NOx = 1.11 (1.04, 1.19) for ICU admission; HR (95% CI) = 1.09 (1.01, 
1.17) for mortality], but was not significantly associated with IRS [OR 
(95% CI) = 1.05 (0.99,1,11)]. No significant associations were observed 
for either 1-year or 1-month averaged non-freeway NRAP with COVID- 
19-related hospitalization. Sensitivity analysis with adjustment for age 
as a cubic spline in the model showed that findings did not significantly 
differ from the adjustment using categorical age (Supplemental Table 4). 

After additionally adjusting for regional PM2.5 and NO2 exposures, 
the associations of longer- and shorter-term non-freeway NRAP were 
attenuated by 19–26% (Fig. 2). However, the associations of 1-year 
averaged non-freeway NRAP with COVID-19-related ICU admission 
and mortality were still statistically significant [OR (95% CI) = 1.08 
(1.02, 1.16) for ICU admission and HR (95% CI) = 1.08 (1.01, 1.16) for 
mortality]. One-month non-freeway NRAP was also associated with 
higher odds of COVID-19-related ICU admission after adjusting for 
regional PM2.5 and NO2 exposures [OR (95% CI) = 1.08 (1.01, 1.16)]. 
However, the association between 1-month non-freeway NRAP and 
COVID-19-related mortality was attenuated by 21% and was not sta
tistically significant after adjusting for regional air pollutants exposure 
[HR (95% CI) = 1.07 (0.99, 1.15)]. 
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No significant effect modifications by age groups and sex were 
observed for the associations of non-freeway NRAP with COVID-19 
severity and mortality (all interaction p > 0.05) (Supplemental Ta
bles 5 and 6). However, the stratified analysis suggested that the asso
ciations of non-freeway NRAP with COVID-19-related mortality were 
non-significantly stronger among individuals 65 years or older [HRs 
(95% CIs) = 1.26 (1.07, 1.49) for 1-year exposure] (Supplemental 
Table 5). Also, associations of 1-year and 1-month non-freeway NRAP 
with COVID-19-related IRS, ICU admission and mortality were non- 
significantly larger among females than males (Supplemental Table 6). 
The only significant interaction was observed for 1-year non-freeway 
NRAP with race/ethnicity for the association with COVID-19-related 
IRS (interaction p = 0.02), with a larger effect size in non-Hispanic 
White group compared to the other race/ethnicity groups (Supple
mental Table 7). 

4. Discussion 

In this multiethnic cohort including over 75,000 COVID-19 patients 
diagnosed before 08/31/2020 in Southern California, we found that 
non-freeway NRAP exposures were associated with a spectrum of 
COVID-19 severity and mortality outcomes, but not with COVID-19- 
related hospitalization. No significant associations were observed for 
freeway NRAP with COVID-19 outcomes. Regional PM2.5 and NO2 ex
posures did explain some of the associations between non-freeway 
NRAP and COVID-19 severity and mortality, but the associations 
remained significant after adjusting for regional air pollutant exposures. 
No significant interactions of age groups and sex were observed. 

Air pollution exposure including traffic-related air pollution expo
sure has been associated with higher risk of COVID-19 incidence and 
mortality. (Wu et al., 2020; Bianconi et al., 2020; Andrée, 2020; Yao 
et al., 2020; Travaglio et al., 2021; Pozzer et al., 2020; Hutter et al., 
2020; Cole et al., 2020) National data from the ecological studies has 
suggested that long-term exposures to PM2.5 and NO2 were associated 
with increased COVID-19 mortality in the United States. (Wu et al., 
2020; Liang et al., 2020) Considering the known effects of air pollution 
on respiratory infection and chronic diseases such as cardiometabolic 
diseases, asthma, and chronic obstructive pulmonary disease (COPD), 
air pollution may also affect COVID-19 severity and mortality. (Langrish 
et al., 2012; An et al., 2018; Lawal, 2017; Lin et al., 2018) Since ambient 
NO2 has been used as a tracer of traffic emission in many urban cities, 
traffic-related air pollution can contribute to the adverse effect of 
ambient air pollution on COVID-19 severity. Like PM2.5 and NO2, traffic- 
related air pollution has been shown to increase systemic inflammation, 
which may play a role in the mechanism of severe COVID-19. (Lanki 
et al., 2015; Rich et al., 2012) Based on this hypothesis, an ecological 
study investigated the association of historical NO2 exposure in 2016, as 
a representative of traffic-related air pollution estimated by the land-use 
regression model, with COVID-19 incidence and mortality in the Los 
Angeles area from 03/16/2020 to 02/23/2021. (Lipsitt et al., 2021) 
Researchers found that an interquartile range (8.7 ppb) increase in 
historical NO2 exposure was associated with a 27% and 34% increased 
incidence and case fatality rate, respectively, in Los Angeles County. 
However, to our knowledge, no cohort studies with individual-level 
NRAP exposure and outcome and comorbidity adjustment have been 

Table 1 
Characteristics of Study Cohort and Pollution Exposure Distribution among 
COVID-19 patients diagnosed from 3/1–8/31/2020 at Kaiser Permanente 
Southern California (N = 75,010).   

Total COVID-19 Cases (N ¼
75,010) 

Age  
Mean (SD), y 42.5 (16.5) 
By age group, N (%)  
<35 y 28,836 (38.4) 
35–64 y 38,977 (52) 
>= 65 y 7197 (9.6) 
Gender, N (%)  
Female 40,290 (53.7) 
Male 34,720 (46.3) 
Race/ethnicity, N (%)  
Asian/Pacific Island 4798 (6.4) 
Black 4384 (5.8) 
Hispanic 49,380 (65.8) 
Other 5038 (6.7) 
White 11,410 (15.2) 
BMI category, N (%)  
Underweight/Normal 14,129 (18.8) 
Overweight 22,371 (29.8) 
Obese (class 1 and 2) 27,705 (36.9) 
Obese (class 3) 6990 (9.3) 
Missing 3815 (5.1) 
Tobacco use, N (%)  
Current 3937 (5.2) 
Former 12,104 (16.1) 
Never 54,557 (72.7) 
Unknown 4412 (5.9) 
Median household income, N (%)  
<$40,000 8298 (11.1) 
$40,000–$79,999 41,972 (56) 
>=$80,000 21,495 (28.7) 
Missing 3245 (4.3) 
College education, N (%)  
No 44,378 (59.2) 
Yes 27,387 (36.5) 
Missing 3245 (4.3) 
Medicaid status, N (%) 243 (0.3) 
Charlson comorbidity score, N (%)  
0 53,385 (71.2) 
1 14,715 (19.6) 
2+ 6910 (9.2) 
Diagnosis Month (2020), N (%)  
March 1846 (2.5) 
April 5681 (7.6) 
May 5505 (7.3) 
June 18,704 (24.9) 
July 31,405 (41.9) 
August 11,869 (15.8) 
Pollution Exposure Variables, Mean (SD)  
Non-freeway NOx (ppb)  
1 month 0.5 (0.38) 
1 year 0.7 (0.51) 
Freeway NOx (ppb)  
1 week 0.8 (1.14) 
1 year 1.0 (1.33) 
Total NOx (ppb)  
1 week 1.3 (1.25) 
1 year 1.7 (1.50) 
PM2.5 (µg/m3)  
1 week 12.7 (5.7) 
1 month 11.8 (3.36) 
1 year 11.0 (1.51) 
4 years 11.4 (1.69) 
NO2 (ppb)  
1 week 8.9 (3.74) 
1 month 8.7 (3.27)) 
1 year 13.9 (3.67) 
4 years 14.6 (3.89) 
O3 (ppb)  
1 week 55.6 (13.94) 
1 month 54.2 (11.96) 
1 year 47.3 (5.64)  

Table 1 (continued )  

Total COVID-19 Cases (N ¼
75,010) 

4 years 47.2 (5.43) 
Outcomes, N (%)  
COVID-related Hospitalization within 30 

Days 
4757 (6.3) 

COVID-related IRS within 30 Days 1764 (2.4) 
COVID-related ICU within 30 Days 1125 (1.5) 
Mortality within 60 Days 1090 (1.5)  
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conducted to robustly examine these associations -a gap our study aims 
to fill. 

Findings from our study with individual-level data consistently show 
that NRAP exposure is a risk factor of COVID-19 severity. Furthermore, 
our results indicate that the effects from freeway and non-freeway 
sources may be different. In this study, non-freeway NRAP exposures 
were particularly associated with higher risk of a spectrum of COVID-19 
severity outcomes including IRS, ICU admission and mortality, while 
there were no significant associations for freeway NRAP. Different as
sociations with non-freeway or freeway air pollution exposures have 
also been observed for other respiratory and cardiometabolic outcomes 
that are known as comorbidities for severe COVID-19. (Kim et al., 2018; 
Eckel et al., 2011; Chen et al., 2019; McConnell et al., 2015) In a chil
dren’s cohort study in Southern California, researchers found that the 
total length of local roads near residences were associated with 
increased exhaled nitric oxide, which suggested that chronic traffic 
exposure from local roads could increase airway inflammation. (Eckel 

et al., 2011) Chronic exposure to non-freeway NRAP has also been 
observed to increase the risk of childhood obesity and altered lipid 
metabolism in young adults. (Kim et al., 2018; Chen et al., 2019; 
McConnell et al., 2015) Our results suggest that high level of non- 
freeway NRAP exposure may increase the risk of having a severe 
outcome after COVID-19 infection and the effect seems beyond the 
adverse effects on respiratory and cardiometabolic systems since these 
comorbidities were already adjusted for in our models. We speculate 
that the different associations between freeway and non-freeway NRAP 
might be attributed to the fact that the chemical composition of NRAP 
exposure from freeway versus non-freeway roads can vary across vehicle 
types and vehicle volume. (Fujita et al., 2007) Freeway NRAP is largely 
comprised of diesel and gasoline combustion products, which decay 
exponentially by the distance to freeways. (Gilbert et al., 2005; Zhu 
et al., 2002) In contrast, non-freeway NRAP exposure contains more 
non-exhaust particles (e.g., brake wear and tire wear). Of note, Southern 
California, where the study cohort was drawn, has less density in 
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Fig. 1. Associations between near-roadway air pollution (NRAP) exposures including (a) non-freeway NOx, (b) freeway NOx, and (c) total NOx with COVID-19 
severity and mortality. Measure of association is hazard ratio for death. All models adjusted for age group, gender, race/ethnicity, income, college education, 
Medicaid insurance status, BMI category, smoking and modified Charlson comorbidity score. 
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freeways and thus fewer residents live near freeways compared to some 
other major metropolitan cities. Taken together, these results support a 
need of future studies to identify specific components or chemicals of 
NRAP that are detrimental to health outcomes. 

Strengths of this study include individual-level NRAP exposures, 
multiple COVID-19-related outcomes, and comprehensive covariate 
data collected from a large multiethnic cohort of COVID-19 patients 
with confirmed diagnosis in the KPSC EMR. The KPSC members cover 
20% of the entire population in Southern California and the socio
demographic characteristics are comparable to the general population in 
Southern California. (Koebnick et al., 2012) Uniform guidelines were 
used across all KPSC medical centers throughout the pandemic period, 
which guaranteed that all KPSC members have equal access to COVID- 
19 testing and treatment options. The unique study population built 
upon the KPSC membership system helps to minimize the potential in
fluence of testing, case ascertainment, and hospital capacity that varied 

over the time. We also included months of diagnosis as a fixed covariate 
in our analysis to further minimize the residual bias due to the unknown 
dynamic confounders. Secondly, the cutting-edge CALINE4 exposure 
model was used to obtain estimates of daily NRAP level across the res
idential history during one year before the COVID-19 diagnosis, so we 
were able to investigate the NRAP exposure effect in various time win
dows from 1-month to 1-year periods. The exposure data also helped 
identify separate roles of freeway and non-freeway NRAP in COVID19- 
severity. Lastly, we adjusted for detailed socio-characteristics and co
morbidity history in the analysis and tested for potential effect modifi
cations across subgroups of age, sex, and race/ethnicity. 

We acknowledge several limitations of our study. First, only COVID- 
19 cases diagnosed during the earlier pandemic period before 08/31/ 
2020 were included in this study. Lower testing accessibility and 
sensitivity during the early pandemic might influence the case ascer
tainment in this study. However, the study cohort included all COVID-19 
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severity and mortality, further adjusting for regional air pollutants exposures of PM2.5 and NO2. Measure of association is hazard ratio for death. All models 
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cases for all KPSC members aged ≥ 12 years. KPSC uses uniform diag
nosis and management guidelines for all members across all medical 
centers. The outcomes included in this study were COVID-19 related 
hospitalization, ICU admission, intensive respiratory support, and death 
after COVID-19 diagnosis, all of which were extracted from the EMR for 
each individual case. Thus, we expect no to minimal ascertainment bias 
for the outcomes. Our finding was consistent with the previous ecolog
ical analysis of traffic-related air pollution in association with COVID-19 
incidence and mortality in Los Angeles. That study found comparable 
findings from the later period of 09/08/2020 to 02/23/2021. We will 
continue to follow our recent EMR data in future studies to validate our 
findings in COVID-19 cases identified after 08/31/2020. Since several 
more transmissible SARS-CoV-2 variants have been found after our 
study period (https://nextstrain.org/ncov/gisaid/global), future studies 
are needed to compare the NRAP effect across various SARS-CoV-2 
variants and across earlier vs. later pandemic periods. Second, 
although both longer- and shorter-term NRAP were investigated in this 
study, we could not clearly distinguish the shorter-term from the longer- 
term exposure effects due to the high temporal correlations (R > 0.9). 
We generally observed that 1-month and 1-year non-freeway NRAP 
were both consistently associated with COVID-19 related IRS, ICU 
admission and mortality, with the effect size of the 1-month exposure 
slightly smaller than that of the 1-year exposure. We also assessed the 
independent effect of NRAP from ambient air pollution exposure. 
Although adjusting for ambient PM2.5 and NO2 attenuated the effect size 
of non-freeway NRAP, the associations between non-freeway NRAP and 
COVID-19-related ICU admission and mortality remained significant. 
Third, we did not assess indoor exposures, the built environment, and 
occupation-related exposures, which would require time activity and 
personal monitoring data. Future studies are needed to investigate both 
indoor and outdoor air pollution effects on COVID-19 outcomes. Indi
vidual and family occupations, household crowding, as well as adher
ence to public interventions such as wearing masks and social distancing 
are important factors contributing to infection, but they are hard to 
capture at the individual level in large population studies. Future studies 
incorporating mobile data collection tools to dynamically obtain 
individual-level data could help to enhance this component of COVID-19 
research. Lastly, although the diverse sociodemographic characteristics 
of KPSC members are comparable to the residents of Southern California 
(Koebnick et al., 2012) and all individuals included in this study had 
commercial, private, Medicare or Medicaid insurance, the findings of 
this study may not be generalizable to some specific populations. 
Although we assessed multiplicative interactions with age, sex and race/ 
ethnicity and no statistically significant multiplicative interactions were 
observed, testing for additive interactions could enhance public health 
interpretations. Since testing additive interactions would require all 
categorical variables, future studies may pursue this by categorizing 
NRAP exposure into levels based on known public health risk. 

In conclusion, data from this large multiethnic cohort of COVID-19 
infected patients in Southern California suggest that traffic-related air 
pollution exposure, particularly air pollution from non-freeway traffic, 
may be associated with elevated risk of COVID-19 severity and mor
tality. The risk appears consistent across different age, sex, and race/ 
ethnicity groups. Future studies are needed to assess the impact of 
emerging COVID-19 variants and chemical component differences be
tween freeway and non-freeway NARP and their impact on health 
outcomes. 
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